Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80

Highlight articles

The physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, is re-examined to demonstrate that the mirror mode is the classical analogue of a superconducting effect in an anisotropic-pressure space plasma. Three different spatial correlation scales are identified which control the behaviour of its evolution into large-amplitude chains of mirror bubbles.

Rudolf A. Treumann and Wolfgang Baumjohann

The novelty of this paper lies in the fact that it addresses the thermosphere-ionosphere coupling in a midlatitude site in north Africa. We have used Fabry-Perot measurements of thermospheric winds and wide-angle camera detection of ionospheric structures at an altitude of about 250 km. We have also used GPS data to extract the TEC over the studied area. We have focused our study on the 27 February geomagnetic storm.

Khalifa Malki, Aziza Bounhir, Zouhair Benkhaldoun, Jonathan J. Makela, Nicole Vilmer, Daniel J. Fisher, Mohamed Kaab, Khaoula Elbouyahyaoui, Brian J. Harding, Amine Laghriyeb, Ahmed Daassou, and Mohamed Lazrek

The magnetospheric response to the solar wind is nonlinear. Information theoretical tools are able to characterize the nonlinearities in the system. We show that nonlinear significance of Dst peaks at lags of 3–12 hours which can be attributed to VBs, which also exhibits similar behavior. However, the nonlinear significance that peaks at lags of 25, 50, and 90 hours can be attributed to internal dynamics, which may be related to the relaxation of the ring current.

Jay R. Johnson, Simon Wing, and Enrico Camporeale

We reveal previously unknown quasi-periodic (QP) VLF emissions at the unusually high-frequency band of ~7–11 kHz by applying the digital filtering of strong sferics to the ground-based VLF data recorded at Kannuslehto station (KAN). In one event, the spectral–temporal forms of the emissions looked like a series of giant “bullets”, with very abrupt cessation. In the second event, the modulation period was about 3 min under the absence of the simultaneous geomagnetic pulsations.

Jyrki Manninen, Natalia Kleimenova, Tauno Turunen, and Liudmila Gromova

The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.

Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud

The sequence of phenomena consisting of solar flares, coronal mass ejections (CMEs), auroral substorm, and geomagnetic storms is mostly a manifestation of electromagnetic energy dissipation. Thus, first of all, it is natural to consider each of them in terms of a sequence of power supply (dynamo), power transmission (electric currents/circuits), and dissipation (mostly observed phenomena), i.e., as an input-output process and the electric current line approach.

Syun-Ichi Akasofu

Results from a high-altitude balloon experiment conducted from a low-latitude station in India are presented in this work. The objectives of this experiment were to probe and understand the processes driving the various electric field sources at low latitudes. During this experiment, electric fields in the range of 5–6 mV m−1 were observed at the balloon float altitude of 35 km. Atmospheric waves of few 100 km horizontal wavelength are suggested to be a potential source of these electric fields.

Subramanian Gurubaran, Manu Shanmugam, Kaliappan Jawahar, Kaliappan Emperumal, Prasanna Mahavarkar, and Suneel Kumar Buduru

A new type of wave has been detected by the magnetometer of the Rosetta spacecraft close to comet P67/Churyumov-Gerasimenko. We provide the analytical model of this wave excitation from linear perturbation theory. A modified ion-Weibel instability is identified as source of this wave excited by a cometary current. The waves predominantly grow perpendicular to this current. A fan-like phase structure results from superposing the strongest growing waves in a cometary rest frame.

P. Meier, K.-H. Glassmeier, and U. Motschmann

This study presents an investigation on the occurrence of fast flows in the magnetotail using the complete available data set of the THEMIS spacecraft for the years 2007 to 2015. First, basic statistical findings concerning velocity distributions, occurrence rates, group structures and key features of 16 000 events are presented using Superposed Epoch and Minimum Variance Analysis techniques.

D. Frühauff and K.-H. Glassmeier

The method of electric field mapping along geomagnetic field lines, derived in an accompanying paper, is applied to the International Geomagnetic Reference Field. Formulae for the geomagnetic field gradient tensor are derived and these are used in a software package developed to map the electric field. A number of examples are presented illustrating the method. The method will be of importance in conjugate studies of ionospheric convection when the external magnetic field can be neglected.

A. D. M. Walker

This paper introduces a new method for mapping electric fields in the magnetosphere along geomagnetic field lines. This is important for conjugate studies of electric fields measured in the ionosphere by SuperDARN radars, and at spacecraft carrying electric field probes. First elementary methods in a dipole field are reviewed and then the theory of of a new method described for general magnetic field models. The method is tested in a dipole model with a Harris magnetotail field.

A. D. M. Walker and G. J. Sofko

Adaptive magnetospheric models based on THEMIS magnetic observations made at 6-9Re in the nightside magnetosphere are used to map the magnetically conjugate 30 and 80keV proton isotropy boundaries (IBs) to investigate the value of Kib=Rc/rc (magnetic curvature radius to particle gyroradius) in the neutral sheet at the IB generation place. For the most accurate mapping, the group Kib spread spans from 4 to 32; its median value is ~13, slightly larger than Kib8 expected for current sheet scatter.

V. A. Sergeev, I. A. Chernyaev, V. Angelopoulos, and N.Y. Ganushkina

This paper presents recent highlights from the Cluster mission on solar wind turbulence, magnetopause asymmetries and magnetosheath density enhancements, dipolarisation currents, reconnection variability, FTE in greatest detail, plasmaspheric wind and re-filling of the plasmasphere, radiation belts, updates of magnetospheric electric and magnetic field models, and magnetosheath and magnetopause properties under low Mach number. Public access to all high-resolution data (CSA) is also presented.

C.P. Escoubet, A. Masson, H. Laakso, and M.L. Goldstein

We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.

I. Richter, C. Koenders, H.-U. Auster, D. Fruehauff, C. Goetz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szego, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier

Total electron content (TEC) between low-Earth-orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain three-dimensional morphology of equatorial plasma bubbles (EPBs). TEC gradient observed along the LEO track is strongest when the corresponding GNSS satellite is located equatorward and westward of the LEO satellite. This anisotropy supports the idea that EPBs have three-dimensional shell structures.

J. Park, H. Lühr, and M. Noja

Rotational discontinuities (RDs) in plasma allow a magnetic connection between different plasma regimes. One of their defining relations describes a balance between changes in plasma mass density and pressure anisotropy. The paper uses the high-time-resolution data from the Cluster satellites to directly test that relation at the terrestrial magnetopause, when standard analysis predicts that this boundary behaves like an RD. The experimental evidence shows that the said relation is not fulfilled.

A. Blagau, G. Paschmann, B. Klecker, and O. Marghitu

A new quantitative model of the global shape of the neutral sheet in the Earth's magnetosphere is developed, parameterized by the dipole tilt, solar wind pressure, and IMF By and Bz. The model is based on data from the Polar, Cluster, Geotail, and Themis satellites taken in 1995-2013. The paper quantifies and further explains our earlier finding of the bowl-shaped deformation of the neutral sheet due to the Earth's dipole tilt (Tsyganenko and Andreeva, GRL, v.41(4), 2014).

N. A. Tsyganenko, V. A. Andreeva, and E. I. Gordeev

In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.

G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett

We discuss three flybys (within an 8-day time span) of comet 1P/Halley by VEGA 1, 2 and Giotto. Looking at two different plasma phenomena: mirror mode waves and field line draping; we study the differences in SW--comet interaction between these three flybys. We find that on this time scale (comparable to Rosetta's orbits) there is a significant difference, both caused by changing outgassing rate of the comet and changes in the solar wind. We discuss implications for Rosetta RPC observations.

M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö

Publications Copernicus